
Plug-In Diffusion Model for Embedding Denoising in
Recommendation System

Jujia Zhao
zhao.jujia.0913@gmail.com

National University of Singapore

Wenjie Wang
wenjiewang96@gmail.com

National University of Singapore

Yiyan Xu
yiyanxu24@gmail.com

University of Science and Technology
of China

Teng Sun
stbestforever@gmail.com
Shandong University

Fuli Feng
fulifeng93@gmail.com

University of Science and Technology
of China

ABSTRACT
In the realm of recommender systems, handling noisy implicit
feedback is a prevalent challenge. While most research efforts focus
on mitigating noise through data cleaning methods like resampling
and reweighting, these approaches often rely on heuristic assump-
tions. Alternatively, model perspective denoising strategies actively
incorporate noise into user-item interactions, aiming to bolster the
model’s inherent denoising capabilities. Nonetheless, this type of
denoising method presents substantial challenges to the capacity of
the recommender model to accurately identify and represent noise
patterns.

To overcome these hurdles, we introduce a plug-in diffusion
model for embedding denoising in recommendation systems, which
employs a multi-step denoising approach based on diffusion models
to foster robust representation learning of embeddings. Our model
operates by introducing controlled Gaussian noise into user and
item embeddings derived from various recommender systems
during the forward phase. Subsequently, it iteratively eliminates
this noise in the reverse denoising phase, thereby augmenting the
embeddings’ resilience to noisy feedback. The primary challenge
in this process is determining direction and an optimal starting
point for the denoising process. To address this, we incorporate a
specialized denoising module that utilizes collaborative data as a
guide for the denoising process. Furthermore, during the inference
phase, we employ the average of item embeddings previously
favored by users as the starting point to facilitate ideal item
generation. Our thorough evaluations across three datasets and in
conjunction with three classic backend models confirm its superior
performance.

CCS CONCEPTS
• Information systems→ Recommender systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Denoising Recommendation, Diffusion Model

ACM Reference Format:
Jujia Zhao, Wenjie Wang, Yiyan Xu, Teng Sun, and Fuli Feng. 2024. Plug-In
Diffusion Model for Embedding Denoising in Recommendation System. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recommender systems play a pivotal role in personalized infor-
mation delivery across a wide range of Web applications [6, 48].
Typically, recommender models learn personalized user preferences
from user feedback [26, 49]. Due to the ease of collecting implicit
feedback (e.g., click and purchase) in large volume, it has become
indispensable for user preference learning [30, 50]. Unfortunately,
implicit feedback inevitably contains noises [2, 22, 41]. For instance,
clicks on micro-videos may not indicate users’ actual satisfaction
due to various interference factors [35]. Such noisy feedback
misguides recommender models in interpreting user preferences,
subsequently hampering the recommendation performance [8, 22,
40]. As such, denoising implicit feedback for recommendation
becomes an imperative task [1].

Previous work primarily mitigates the impact of noisy feedback
from the perspective of data cleaning, including resampling and
reweighting user-item interactions. Specifically, 1) resampling
methods [4, 5, 47] aim to identify noisy interactions and sample
more clean interactions for training (Figure 1(a)). For instance,
WBPR [9] believes that non-interacted popular items are more
likely to be true negative items and allocates higher sampling
probabilities. 2) Reweighting methods [35, 38, 40] utilize all training
interactions yet assign lower weights to potential noisy ones
(Figure 1(b)). For instance, reweighted loss [35] assigns lower
weights to the large-loss interactions since it assumes large-loss
interactions are more likely to be noisy. Notably, these data cleaning
methods depend on certain heuristic assumptions, such as the large-
loss assumption [35] and cross-model agreement [38]. As their
assumptions rely heavily on the distribution of noisy interactions,
these data cleaning methods suffer from limited adaptability,
requiring substantial configuration tuning to adapt to different
backend models and datasets.

ar
X

iv
:2

40
1.

06
98

2v
3

 [
cs

.I
R

]
 2

9
Ja

n
20

24

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Jujia Zhao, Wenjie Wang, Yiyan Xu, Teng Sun, and Fuli Feng

(a) Resampling method.

(b) Reweighting method.

Resampling for
data cleaning

Recommender
model

(c) Model perspective
denoising method. (d) Denoising diffusion method.

…
…

Multi-step add noise and denoising

Recommender
model

Reweighting for
data cleaning

Noisy instance
Clean instance

Denoising
Model

Figure 1: Illustration of resampling, reweighting, model
perspective denoising, and denoising diffusion methods.

For denoising implicit feedback, another research line is from
model perspective, seeking to bolster recommender models’ inher-
ent noise resistance capabilities. These model perspective methods
usually add random noises to user-item interactions [45] or drop
positive interactions as augmented data [11, 42], and then regulate
recommender models to learn robust representations from the
augmented data [39]. For example, CDAE corrupts users’ inter-
actions randomly with a noise ratio and subsequently optimizes
recommender models to recover the original clean interactions.
Nevertheless, as illustrated in Figure 1(c), these model perspective
methods solely rely on a single model to directly convert noisy
data into clean data, imposing substantial demands on the model’s
representation capacity to efficiently capture noise patterns.

Diffusion models, as a kind of powerful generative model,
inherently possess a denoising aptitude to enhance existing model-
perspective methods [13]. Diffusion models have already revealed
remarkable effectiveness across various domains like image gen-
eration and molecule generation, demonstrating their superior
representation capabilities [3, 32]. To adopt diffusion models for
denoising recommendations, the potential benefits lie in two
aspects: 1) during the forward process, diffusion models enhance
noise diversity by continuously injecting noises with controllable
noise scales and steps; and 2) in the reverse denoising process,
diffusion models decompose the complex denoising problem into
multiple steps, thereby reducing the denoising difficulty at each step
(Figure 1(d)). In light of these, it is promising to incorporate diffusion
models to enhance robust representation learning of recommender
models.

To this end, we propose a plug-in denoising model for existing
recommender models called Denoising Diffusion Recommender
Model (DDRM). Given user and item embeddings from any recom-
mender models, DDRM improves their robustness against noisy
feedback via two processes. In the forward process, we proactively
inject Gaussian noises into user and item embeddings with ad-
justable scales and steps, yielding noisy embeddings. The reverse
denoising process then iteratively removes noises via a learnable
neural network. However, the denoising process hinges critically on
two elements: the direction and starting point of denoising, which

need to be carefully designed in the recommendation scenario. In
detail, 1) effective denoising direction can ensure that the denoising
path leads to the clean embeddings of users (or items). In some
fields like image generation where diffusion models are commonly
used, they utilize high-level semantic instructions as guidance
for the denoising direction [3], but the recommendation domain
has yet to explore how to extract good representation from weak
collaborative information to guide the denoising process. 2) A well-
chosen starting point can verify the feasibility and reliability of
the denoising process. While traditional diffusion models typically
generate images from pure noises conditional on abundant textual
instructions [19], generating high-quality denoised embeddings
from pure noises for users and items is particularly challenging (cf.
Table 3) since the recommendation data lacks adequate guidance
for conditional generation.

To tackle these obstacles, we design a specialized denoising
module for the reverse process of DDRM. Given noisy user (or
item) embeddings, the denoising module devises strategies to
encode the collaborative information, e.g., users’ liked items, to
guide the reverse denoising process. For the inference phase, to
generate an ideal item as the recommendation for a user, we take
the average embeddings of the user’s historically liked items as the
starting point, instead of reverting from pure noises (cf. Section 3.3
for details). Given the generated item embedding, we present a
rounding function to ground the generated item to existing item
candidates by the embeddings’ similarity. As an extension, we
also consider adding a reweighted loss to supplement DDRM from
the perspective of data cleaning. We implement DDRM on three
representative recommender models and conduct comprehensive
experiments to validate its effectiveness against other baselines on
three public datasets.

The main contributions of this work are threefold:
• We propose a model-agnostic denoising diffusion recommender
model, aiming at enhancing robust representation learning of
existing recommender models against noisy feedback.

• We utilize collaborative information to guide the reverse denois-
ing process of DDRM and revise the inference phase to alleviate
the challenge of generating item embeddings from pure noises.

• We instantiate DDRM on three backend models and execute
extensive experiments under various settings, confirming its
efficacy across three public datasets.

2 PRELIMINARY
Diffusion models have already demonstrated proficient perfor-
mance in domains like computer vision and molecular genera-
tion [15, 28]. Typically, diffusion models encompass two compo-
nents: the forward and reverse processes [13].
• Forward process aims to inject Gaussian noises into the original
data. Given a data sample 𝒙0, diffusion models continuously
add different scale Gaussian noises to it in 𝑇 steps until get 𝒙𝑻 .
Specifically, for adding noise from 𝒙𝒕−1 to 𝒙𝒕 , we have:

𝑞(𝒙𝒕 |𝒙𝒕−1) = N(𝒙𝒕 ,
√︁

1 − 𝛽𝑡𝒙𝒕−1, 𝛽𝑡 I), (1)

where 𝑡 ∈ {1, 2, ...,𝑇 } is the current step, 𝛽𝑡 ∈ (0, 1) is the noise scale
in step 𝑡 , 𝑰 is the identity matrix, andN is the Gaussian distribution
which means 𝒙𝒕 is sampled from this distribution. According to the

Plug-In Diffusion Model for Embedding Denoising in Recommendation System Conference’17, July 2017, Washington, DC, USA

Denoising Diffusion Recommender Model

…

Forward process

User denoising module

Item denoising module

Reverse process

Rec Model

𝒆𝑻𝒖𝒆𝟎𝒖 𝒆𝟏𝒖

𝒆𝟎𝒊 𝒆𝒊𝟏 𝒆𝑻𝒊

𝒆"𝟎𝒖

𝒆"𝟎𝒊

𝒆𝒖

𝒆𝒊

𝒆"𝒖

𝒆"𝒊

𝒆𝒊

𝒆"𝑻&𝟏𝒖

𝒆"𝑻&𝟏𝒊

𝒆𝑻𝒖

𝒆𝑻𝒊

𝒆𝒖

𝒆𝒕𝒖𝒆#𝟎𝒖𝒆"𝒕&𝟏𝒖

𝒆𝒕𝒊𝒆#𝟎𝒊𝒆"𝒕&𝟏𝒊

Step
embedding t

×(𝑻 − 𝟏)

Step
embedding t

Interacted user
embedding

Interacted item
embedding

Figure 2: Structure of DDRM. The left part is the backend recommender model. DDRM accepts both user and item embeddings
as inputs and subsequently produces denoised embeddings that are fed back into the model to do the recommendation task.

additivity of independent Gaussian noises and reparameterization
trick [13, 14], 𝒙𝒕 can be directly obtained from 𝒙0 in the calculation:

𝑞(𝒙𝒕 |𝒙0) = N(𝒙𝒕 ,
√
𝛼𝑡𝒙0, (1 − 𝛼𝑡)I), (2)

where 𝛼𝑡 =
∏𝑡

𝑠=1 𝛼𝑠 , 𝛼𝑠 = 1 − 𝛽𝑠 .
• Reverse process is designed to iteratively denoise the noisy data
𝒙𝑻 , following the sequence (𝒙𝑻 → 𝒙𝑻−1 → 𝒙𝑻−2 → ... → 𝒙0).
According to [46], under the conditions where𝑞(𝒙𝒕 |𝒙𝒕−1) conforms
to a Gaussian distribution and 𝛽𝑡 remains sufficiently small, the
distribution 𝑝 (𝒙𝒕−1 |𝒙𝒕) also exhibits Gaussian properties. As such,
a neural network can be utilized to predict this reverse distribution:

𝑝 (𝒙𝒕−1 |𝒙𝒕) = N(𝒙𝒕−1; 𝝁𝜃 (𝒙𝒕 , 𝑡), 𝚺𝜃 (𝒙𝒕 , 𝑡)), (3)

where 𝜃 is the parameters of the neural network, and 𝝁𝜃 (𝒙𝑡 , 𝑡) and
𝚺𝜃 (𝒙𝑡 , 𝑡) are the mean and covariance of this Gaussian distribution.
• Training. For training the diffusion models, the key focus is
obtaining reliable values for 𝝁𝜃 (𝒙𝑡 , 𝑡) and 𝚺𝜃 (𝒙𝑡 , 𝑡)) to guide the
reverse process towards accurate denoising. To achieve this, it is
important to optimize the variational lower bound of the negative
log-likelihood of the model’s predictive denoising distribution
𝑝𝜃 (𝒙0) :

L = E𝑞 (𝑥0) [− log 𝑝𝜃 (𝒙0)]
≤ E𝑞 [𝐿𝑇 + 𝐿𝑇−1 + ... + 𝐿0] ,where

(4)


𝐿𝑇 = 𝐷KL (𝑞(𝒙𝑇 |𝒙0) ∥ 𝑝𝜃 (𝒙𝑇))
𝐿𝑡 = 𝐷KL (𝑞(𝒙𝑡 |𝒙𝑡+1, 𝒙0) ∥ 𝑝𝜃 (𝒙𝑡 |𝒙𝑡+1))
𝐿0 = − log 𝑝𝜃 (𝒙0 |𝒙1),

(5)

where 𝑡 ∈ {1, 2, ...,𝑇 − 1}. While 𝐿𝑇 can be disregarded during
training due to the absence of learnable parameters in the forward
process, 𝐿0 represents the negative log probability of the original
data sample 𝑥0 given the first-step noisy data 𝑥1, and 𝐿𝑡 aims
to align the distribution 𝑝𝜃 (𝒙𝑡 |𝒙𝑡+1) with the tractable posterior
distribution 𝑞(𝒙𝑡 |𝒙𝑡+1, 𝒙0) in the reverse process [24].

3 METHOD
To mitigate the effect of noisy feedback, we propose DDRM to
denoise the user and item embeddings. Refer to Figure 2, DDRM
mainly contains three parts: forward process, reverse process, and

denoising modules. Intuitively, given pre-trained user and item
embeddings, DDRM continuously injects Gaussian noises and then
denoises these noisy embeddings iteratively to attain the final clean
embeddings. Through these processes, DDRM captures the noise
distribution in the noisy embeddings and mitigates such noises.

3.1 DDRM Framework
• Forward process. Given pre-trained user embeddings 𝒆𝒖 of user
𝑢 and item embeddings 𝒆𝒊 of item 𝑖 from a backend recommender
model, we begin the forward process by setting 𝒆𝒖0 = 𝒆𝒖 and 𝒆 𝒊0 = 𝒆𝒊 .
Subsequently, we continuously incorporate Gaussian noises into
𝒆𝒖0 and 𝒆 𝒊0 separately with adjustable scales and steps:

𝑞(𝒆𝒖𝒕 |𝒆
𝒖
0) = N(𝒆𝒖𝒕 ,

√
𝛼𝑡 𝒆

𝒖
0 , (1 − 𝛼𝑡)I), (6)

𝑞(𝒆 𝒊𝒕 |𝒆
𝒊
0) = N(𝒆 𝒊𝒕 ,

√
𝛼𝑡 𝒆

𝒊
0, (1 − 𝛼𝑡)I), (7)

where 𝛼𝑡 =
∏𝑡

𝑠=1 𝛼𝑠 , 𝛼𝑠 = 1 − 𝛽𝑠 , 𝛽𝑠 ∈ (0, 1) controls the noise
scale added to the embedding in the current step 𝑠 , and 𝑒 (·)𝑡 denotes
the user or item embeddings in the forward step 𝑡 . To regulate the
noise level in each step, we follow [36] employing a linear noise
schedule in the forward process:

1 − 𝛼𝑡 = 𝑠 ·
[
𝛼min + 𝑡 − 1

𝑇 − 1
(𝛼max − 𝛼min)

]
, (8)

where 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 are the minimum and maximum of the noise
correspondingly, 𝑡 is the current forward step,𝑇 is the total forward
step, and 𝑠 ∈ (0, 1) controls the noise scale.
• Reverse process. After getting noisy user embeddings 𝒆𝒖𝑻 and
noisy item embeddings 𝒆 𝒊𝑻 in the forward process, we denoise these
embeddings iteratively in the reverse process. In each reverse step,
we design the user denoisingmodule and the item denoisingmodule
to denoise user embeddings and item embeddings separately since
the noise distribution is different for users and items:

𝑝𝜃 (𝒆𝒖𝒕−1 |𝒆
𝒖
𝒕) = N(𝒆𝒖𝒕−1; 𝝁𝜃 (𝒆𝒖𝒕 , 𝑡), 𝚺𝜃 (𝒆

𝒖
𝒕 , 𝑡)), (9)

𝑝𝜓 (𝒆 𝒊𝒕−1 |𝒆
𝒊
𝒕) = N(𝒆 𝒊𝒕−1; 𝝁𝜓 (𝒆 𝒊𝒕 , 𝑡), 𝚺𝜓 (𝒆

𝒊
𝒕 , 𝑡)), (10)

where 𝒆𝒖𝒕 and 𝒆 𝒊𝒕 are the denoised embeddings in the reverse step 𝑡 ,
𝜃 and𝜓 are the learnable parameters of the user denoising module

Conference’17, July 2017, Washington, DC, USA Jujia Zhao, Wenjie Wang, Yiyan Xu, Teng Sun, and Fuli Feng

and the item denoising module correspondingly. These denoising
module are executed iteratively in the reverse process until the
generation of final clean embeddings 𝒆𝒖0 and 𝒆 𝒊0.
• Denoising module. Denoising module aims to denoise the noisy
embedding in each reverse step. Since the user denoising module
and the item denoising module have the same structure, we mainly
focus on explaining the user denoising module which is formulated
as Eq. (9). As illustrated in Eq. (5), the diffusion training aims
to align the distribution 𝑝𝜃 (𝒆𝒖𝒕−1 |𝒆

𝒖
𝒕) with the tractable posterior

distribution 𝑞(𝒆𝒖𝒕−1 |𝒆
𝒖
𝒕 , 𝒆

𝒖
0) in the reverse process, thus we can use

𝑞(𝒆𝒖𝒕−1 |𝒆
𝒖
𝒕 , 𝒆

𝒖
0) to constrain 𝑝𝜃 (𝒆𝒖𝒕−1 |𝒆

𝒖
𝒕). Through Bayes’ theorem,

we can derive:

𝑞 (𝒆𝒖𝒕−1 |𝒆𝒖𝒕 , 𝒆𝒖0) = N(𝒆𝒖𝒕−1, 𝝁𝒕 (𝒆𝒖𝒕 , 𝒆𝒖0), 𝛽𝑡 𝑰), where (11)


𝝁𝒕 (𝒆𝒖𝒕 , 𝒆𝒖0) =

√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝒆𝒖𝒕 +

√
𝛼𝑡−1 (1 − 𝛼𝑡)

1 − 𝛼𝑡
𝒆𝒖0 ,

𝛽𝑡 =
(1 − 𝛼𝑡) (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
.

(12)

𝝁𝒕 (𝒆𝒖𝒕 , 𝒆
𝒖
0) and 𝛽𝑡 𝑰 are the mean and covariance of 𝑞(𝒆𝒖𝒕−1 |𝒆

𝒖
𝒕 , 𝒆

𝒖
0).

Following [36], we can similarity factorize 𝑝𝜃 (𝒆𝒖𝒕−1 |𝒆
𝒖
𝒕):

𝑝𝜃 (𝒆̂𝒖𝒕−1 | 𝒆̂𝒖𝒕) = N(𝒆̂𝒖𝒕−1; 𝝁𝜃 (𝒆̂𝒖𝒕 , 𝑡), 𝛽𝑡 𝑰)), where (13)

𝝁𝜽 (𝒆̂𝒖𝒕 , 𝑡) =
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝒆̂𝒖𝒕 +

√
𝛼𝑡−1 (1 − 𝛼𝑡)

1 − 𝛼𝑡
𝒆̃𝒖0 . (14)

𝒆̃𝒖0 is the predicted 𝒆𝒖0 since the distribution of 𝒆𝒖0 is unknown in
the reverse process. We employ the multi-layer perceptron (MLP)
to reconstruct 𝒆𝒖0 in the denoising module.

To ensure tractability in the embedding denoising process, it is
paramount to infuse collaborative information as guidance. Collab-
orative information, which is based on user interaction behaviors,
can enable the denoising module to recognize user preferences,
subsequently assisting to identify and mitigate noise. Additionally,
the step information also affects the denoising performance. It
provides insight into the current noise level in the embeddings,
offering a gauge on the extent of denoising required at each step.
As such, we use collaborative information 𝒄𝒖 and step embedding
as condition elements, to guide the reconstruction process in the
denoising modules (cf. Section 3.2 for the calculation of 𝒄𝒖 in detail).
Specifically, for user embedding 𝒆𝒖𝒕 in the reverse step 𝑡 , the user
reconstruction MLP yields:

𝒆̃𝒖0 = 𝒇𝜽 (𝒆𝒖𝒕 , 𝒄𝒖 , 𝑡), (15)

where 𝒆̃𝒖0 is the predicted 𝒆𝒖0 by the reconstruction MLP with the
parameter 𝜽 . It is noteworthy that the step information is encoded
through sinusoidal positional encoding [13], and these three inputs
are concatenated together to feed into the MLP.

Similarly, for the item denoising module, given item embedding
𝒆 𝒊𝒕 in the reverse step 𝑡 , the other item reconstruction MLP outputs
𝒆̃ 𝒊0 = 𝒇𝝍 (𝒆 𝒊𝒕 , 𝒄 𝒊, 𝑡), where 𝒄 𝒊 represent the collaborative information
of item 𝑖 , and 𝒆̃ 𝒊0 is the predicted 𝒆 𝒊0 by the item reconstruction MLP
with the parameter 𝝍.

Generally, in the denoising module, we get predicted original
embedding 𝒆̃𝒖0 and 𝒆̃ 𝒊0 from the user reconstruction MLP and the
item reconstruction MLP respectively, and then utilize Eq. (13) to
get the denoised embeddings for the current step.

Algorithm 1 DDRM Training

Input: interaction data 𝑫̄ , pre-trained user embedding 𝒆𝒖0 , pre-
trained item embedding 𝒆 𝒊0, diffusion step𝑇 , user reconstruction
MLP 𝒇𝜽 , item reconstruction MLP 𝒇𝝍

1: repeat
2: Sample a batch of interactions 𝑫 ⊂ 𝑫̄ .
3: for all (𝑢, 𝑖, 𝑗) ∈ 𝑫 do
4: Sample 𝑡 ∼ U(1,𝑇), 𝝐𝒖 ∼ N(0, 𝑰), 𝝐𝒊 ∼ N(0, 𝑰);
5: Compute 𝒆𝑢𝑡 given 𝒆𝑢0 , 𝑡 , and 𝝐𝒖 via 𝑞(𝒆𝑢𝑡 |𝒆𝑢0) in Eq. (6);
6: Compute 𝒆𝑖𝑡 given 𝒆𝑖0, 𝑡 , and 𝝐𝒖 via 𝑞(𝒆𝑖𝑡 |𝒆𝑖0) in Eq. (7);
7: Reconstruct 𝒆̃𝒖0 and 𝒆̃ 𝒊0 through 𝒇𝜽 and 𝒇𝝍 ;
8: Calculate Lfinal by Eq. (22);
9: Take gradient descent step on ∇𝜃 (Lfinal) to optimize 𝜃 ;
10: Take gradient descent step on∇𝜓 (Lfinal) to optimize𝜓 ;
11: until converged
Output: optimized 𝜃 ,𝜓 .

3.2 Optimization
• DDRM training. The optimization of DDRM is under the BPR
training setting: given recommendation data with the triplet (𝑢, 𝑖, 𝑗),
item 𝑖 and item 𝑗 are the positive item and negative item of user
𝑢, respectively. Please note that we only conduct denoising for
user 𝑢 and positive interacted item 𝑖 since denoising negative item
𝑗 is rendered relatively insignificant due to the random negative
sampling mechanism.

To optimize the embedding denoising process, it is essential to
minimize the variational lower bound of the predicted user and
item embeddings. According to the KL divergence based on the
multivariate Gaussian distribution in Eq. (5), the reconstruction loss
of the denoising process within a training iteration is expressed as:

Lre (𝑢, 𝑖) = E𝑞
[
− log𝑝𝜽 (𝒆̂𝑢0) − log𝑝𝝍 (𝒆̂𝑖0)

]
≤ L𝑢 + L𝑖 + L𝑢

0 + L𝑖
0, where

(16)



L𝑢 =
∑𝑇

𝑡=2 E𝑞

[
1
2

(
𝛼𝑡−1

1 − 𝛼𝑡−1
− 𝛼𝑡

1 − 𝛼𝑡

)
| |𝒆𝒖0 − 𝒇𝜽 (𝒆𝒖𝒕 , 𝒆𝒊, 𝑡) | |22

]
,

L𝑖 =
∑𝑇

𝑡=2 E𝑞

[
1
2

(
𝛼𝑡−1

1 − 𝛼𝑡−1
− 𝛼𝑡

1 − 𝛼𝑡

)
| |𝒆𝒊0 − ˆ𝒇𝝍 (𝒆𝒊𝒕 , 𝒆𝒖 , 𝑡) | |22

]
,

L𝑢
0 = E𝑞

[
∥ 𝒆𝒖0 − 𝒇𝜽 (𝒆𝒖1 , 𝒆𝒊, 1) ∥2

2

]
,

L𝑖
0 = E𝑞

[
∥ 𝒆𝒊0 − 𝒇𝜽 (𝒆𝒊1, 𝒆𝒖 , 1) ∥2

2

]
,

(17)

where 𝒆𝒊 and 𝒆𝒖 are the original embeddings of user 𝑢 and item 𝑖 ,
which serve as the collaborative information 𝒄𝒖 and 𝒄 𝒊 , respectively.
L𝑢 and L𝑖 are the user and item reconstruction loss in the reverse
process, L𝑢

0 and L𝑖
0 are the final prediction loss correspondingly.

From Eq. (18), it is clear that the essence of the DDRM training lies
in optimizing the distance between the reconstructed embedding
derived from MLP and the original embedding.

To reduce the computational cost in the implementation, we
simplify Eq. (17) by uniformly sampling 𝑡 from {1, 2, ...,𝑇 } instead
of summing𝑇 steps and removing the weight before the MSE terms:

Lre (𝑢, 𝑖) = (L𝑢
simple + L𝑖

simple)/2, where (18){L𝑢
simple = E𝑡∼U(1,𝑇)E𝑞

[
| |𝒆𝒖0 − 𝒆𝜽 (𝒆𝒖𝒕 , 𝒆𝒊, 𝑡) | |22

]
,

L𝑖
simple = E𝑡∼U(1,𝑇)E𝑞

[
| |𝒆𝒊0 − ˆ𝒆𝝍 (𝒆𝒊𝒕 , 𝒆𝒖 , 𝑡) | |22

]
.

(19)

Plug-In Diffusion Model for Embedding Denoising in Recommendation System Conference’17, July 2017, Washington, DC, USA

Algorithm 2 DDRM Inference

Input: all users 𝑼̄ , diffusion step 𝑇 , inference step 𝑇 ′, item
reconstruction MLP 𝒇𝝍

1: Sample a batch of users 𝑼 ⊂ 𝑼̄ .
2: for all 𝑢 ∈ 𝑼 do
3: Sample 𝝐𝒊 ∼ N(0, 𝑰);
4: Compute average embeddings of users’ historically liked

items 𝒆𝒊 via Eq. (23);
5: Compute 𝒆 𝒊𝑻 given 𝒆 𝒊0, 𝑇 , and 𝝐𝒊 via 𝑞(𝒆 𝒊𝑻 |𝒆

𝒊
0) in Eq. (7);

6: for 𝑡 = 𝑇 ′, . . . , 1 do
7: Reconstruct 𝒆 𝒊0 through 𝒇𝝍 ;
8: Compute 𝒆 𝒊𝒕−1 from 𝒆 𝒊𝒕 and 𝒆 𝒊0 via Eq. (13);
9: Rounding via Eq. (24) to get the ideal item 𝒆;

Output: the ideal item 𝒆.

• Loss function. The final loss function of DDRM comprises two
parts: a reconstruction loss for the denoising process and a BPR
loss for the recommendation task. The reconstruction loss Lre (𝑢, 𝑖)
is derived from Eq. (18), which regulates the denoising of user and
item embeddings.

After obtaining the denoised user and positive item embeddings
via DDRM, these embeddings contribute to the computation of
BPR loss Lbpr [12]. We design a loss balance factor 𝜆 to adjust the
weight of these two losses:

L(𝑢, 𝑖, 𝑗) = 𝜆Lbpr (𝑢, 𝑖, 𝑗) + (1 − 𝜆)Lre (𝑢, 𝑖), (20)

where 𝑖 and 𝑗 are positive and negative items for user 𝑢 in the
BPR training setting. As an extension, we also consider adding a
reweighted loss to supplement DDRM from the perspective of data
cleaning (see empirical evidence of its effectiveness in Section 4.3.2).
Specifically, inspired by [35], we dynamically allocate lower weights
to instances with relatively lower positive scores since they are
more likely to be noisy data.

𝑤 (𝑢, 𝑖, 𝑗) = sigmoid(𝑠 (𝑢, 𝑖))𝛾 , (21)

Lfinal (𝑢, 𝑖, 𝑗) = 𝑤 (𝑢, 𝑖, 𝑗)L(𝑢, 𝑖, 𝑗), (22)

where 𝑠 (𝑢, 𝑖) quantifies the score between users𝑢 and positive items
𝑖 , and𝛾 is the reweighted factor which controls the range of weights.
The training step of DDRM is illustrated in Algorithm 1.

3.3 Inference
In the inference phase, we need to utilize trained DDRM to generate
ideal items to do the recommendation task for each user. Typically,
the default method used in image generation entails generating an
item from pure noise in the reverse process, conditional on textual
instructions [3]. However, recommendation data lacks sufficient
guidance signals for conditional generation. Consequently, instead
of generating from pure noise, we take the average embeddings
of users’ historically liked items as input since the interaction
information reflects the preferences of users, thereby guiding
the diffusion process. Specifically, we first get the average item
embedding 𝒆𝒊 :

𝒆𝒊 =
1
𝑛

∑
𝑖∈I𝑢

𝒆𝒊, (23)

Table 1: Statistics of three datasets under two distinct settings.
“#Int.” denotes interactions numbers. “N” and “R” represent
natural noise setting and random noise setting, respectively.

#User #Item (N) #Int. (N) #Item (R) #Int. (R)
Yelp 54,574 77,405 1,471,675 34,395 1,402,736
Amazon-book 108,822 178,181 3,145,223 94,949 3,146,256
ML-1M 5,949 3,494 618,297 2,810 571,531

where𝑛 is the number of historical interacted items of user𝑢, andI𝑢
is the historical interacted items. Subsequently, we introduce noise
into 𝒆𝒊 continuously following the sequence 𝒆 𝒊0 → 𝒆 𝒊1 → · · · → 𝒆 𝒊𝑻
in the forward process. And then, we set 𝒆 𝒊

𝑻 ′ = 𝒆 𝒊𝑻 to execute the
reverse process by 𝒆 𝒊

𝑻 ′ → 𝒆 𝒊
𝑻 ′−1 → · · · → 𝒆 𝒊0 to generate a new

item embedding 𝒆 𝒊0 conditioned on current step embedding and user
original embedding 𝒆𝒖 . It is important to note that we enhance the
denoising process by increasing the reverse step in comparison to
the training phase. This is crucial because the average embedding of
users’ historically liked items tends to contain more noise, resulting
from the aggregation of numerous item embeddings. Following
this, to obtain ideal items for the recommendation task, we develop
a rounding function 𝑠 (𝒆 𝒊0, 𝒆𝒊) that calculates the inner product
between the generated item embeddings 𝒆 𝒊0 and the candidate item
embeddings to get a similarity score:

𝑠 (𝒆 𝒊0, 𝒆𝒊) = 𝒆 𝒊0 · 𝒆𝑻𝒊 , 𝑖 ∈ I (24)

where I is the candidate item pool. Subsequently, we rank the
similarity score and select the top-k candidate items for recommen-
dation. The inference procedure of DDRM is stated in Algorithm 2.

4 EXPERIMENTS
In this section, we conduct a comprehensive experimental study to
address the following research questions:
- RQ1: How does the performance of DDRM compare with other
baselines across the datasets in different experiment settings?

- RQ2: What is the impact of different components within the
DDRM on overall performance?

- RQ3: How do variations in DDRM’s backbone design impact
its efficacy?

4.1 Experimental Settings
4.1.1 Datasets. We evaluate our proposed DDRM on three pub-
licly accessible datasets in different experiment settings. 1) Yelp1
is an open dataset for recommendation, which contains a large
collection of user reviews and ratings for different restaurants. 2)
Amazon-book is one of the Amazon product review datasets2,
covering users’ purchase history and rating scores over books. 3)
ML-1M3 is a well-established benchmark dataset that compiles
movie ratings submitted by users. For each dataset, the interactions
with ratings < 4 are regarded as false-positive interactions.

Following [36], we first arrange the user-item interactions
chronologically based on the timestamps, and then split true-
positive interactions (ratings ≥ 4) into training, validation and
1https://www.yelp.com/dataset/.
2https://jmcauley.ucsd.edu/data/amazon/.
3https://grouplens.org/datasets/movielens/1m/.

https://www.yelp.com/dataset/.
https://jmcauley.ucsd.edu/data/amazon/.
https://grouplens.org/datasets/movielens/1m/.

Conference’17, July 2017, Washington, DC, USA Jujia Zhao, Wenjie Wang, Yiyan Xu, Teng Sun, and Fuli Feng

Table 2: Overall performance of DDRM and other baselines under natural noise setting. Bold signifies the best performance
among the backend models, model-agnostic methods and DDRM. underline represents the best results in all compared models.
* denotes statistically significant improvements of DDRM over the backend models, according to the t-tests with a significance
level of 𝑝 < 0.01.

Yelp Amazon-book ML-1M
Methods R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
CDAE 0.0305 0.0530 0.0178 0.0246 0.0219 0.0399 0.0122 0.0175 0.0355 0.0675 0.0272 0.0391
AdaGCL 0.0464 0.0774 0.0277 0.0371 0.0282 0.0464 0.0166 0.0220 0.0630 0.1200 0.0453 0.0659
MultiVAE 0.0484 0.0823 0.0289 0.0391 0.0508 0.0771 0.0300 0.0379 0.0636 0.1229 0.0450 0.0667
DiffRec 0.0501 0.0847 0.0307 0.0412 0.0537 0.0806 0.0329 0.0411 0.0658 0.1236 0.0488 0.0703
MFBPR 0.0286 0.0503 0.0176 0.0242 0.0217 0.0379 0.0131 0.0179 0.0445 0.0890 0.0429 0.0582

+T-CE 0.0316 0.0547 0.0191 0.0261 0.0230 0.0393 0.0136 0.0185 0.0460 0.0866 0.0432 0.0573
+R-CE 0.0324 0.0554 0.0195 0.0265 0.0227 0.0394 0.0134 0.0184 0.0472 0.0901 0.0434 0.0587
+DeCA 0.0295 0.0494 0.0181 0.0241 0.0118 0.0188 0.0071 0.0092 0.0451 0.0863 0.0428 0.0851
+DDRM 0.0354* 0.0578* 0.0215* 0.0282* 0.0249* 0.0406* 0.0148* 0.0196* 0.0477* 0.0916* 0.0450* 0.0601*

LightGCN 0.0502 0.0858 0.0295 0.0403 0.0432 0.0710 0.0251 0.0333 0.0618 0.1193 0.0444 0.0652
+T-CE 0.0504 0.0856 0.0294 0.0400 0.0421 0.0691 0.0242 0.0323 0.0625 0.1191 0.0457 0.0661
+R-CE 0.0516 0.0877 0.0304 0.0412 0.0439 0.0723 0.0253 0.0337 0.0623 0.1208 0.0457 0.0668
+DeCA 0.0486 0.0832 0.0286 0.0390 0.0419 0.0688 0.0242 0.0321 0.0616 0.1202 0.0446 0.0659
+DDRM 0.0516* 0.0870* 0.0305* 0.0412* 0.0468* 0.0742* 0.0273* 0.0355* 0.0667* 0.1221* 0.0508* 0.0710*

SGL 0.0485 0.0835 0.0287 0.0393 0.0467 0.0758 0.0267 0.0353 0.0620 0.1164 0.0448 0.0648
+T-CE 0.0493 0.0840 0.0293 0.0398 0.0483 0.0765 0.0276 0.0361 0.0647 0.1184 0.0470 0.0667
+R-CE 0.0488 0.0831 0.0289 0.0393 0.0498 0.0772 0.0283 0.0367 0.0651 0.1165 0.0479 0.0670
+DeCA 0.0476 0.0801 0.0282 0.0380 0.0489 0.0764 0.0285 0.0368 0.0641 0.1183 0.0475 0.0673
+DDRM 0.0517* 0.0860* 0.0312* 0.0415* 0.0535* 0.0813* 0.0313* 0.0396* 0.0698* 0.1261* 0.0530* 0.0739*

testing sets with a ratio of 7:1:2. To evaluate the effectiveness of
denoising implicit feedback, we train and validate the framework
on noisy interactions (both true-positive and false-positive interac-
tions), and test the framework only on true-positive interactions.
Specifically, we explore two types of noisy settings: natural noise
and random noise. While keeping the testing set containing only
true-positive interactions, 1) Natural noise setting introduces
false-positive interactions (ratings < 4) into the original training
and validation sets; 2) Random noise setting randomly samples
unobserved interactions into the original training and validation
sets. Moreover, we ensure that the training and validation sets under
the two noisy settings are at the same scale as the original dataset
partition. The statistics of datasets are shown in Table 1.

4.1.2 Baselines. To demonstrate the efficacy of our proposed
DDRM in denoising implicit feedback, we compare DDRM with the
state-of-the-art model-agnostic denoising methods. In particular,

• R-CE [35] employs a reweight-based denoising strategy that
assumes large-loss interactions are more likely to be noisy and
adaptively allocates lower weights to them.

• T-CE [35], guided by the same assumption as R-CE, directly
eliminates large-loss interactions using a dynamic threshold
during training.

• DeCA [38] leverages predictions from different models as
denoising signals, under the assumption that different models
tend to provide more consistent predictions for clean data in
contrast to noisy ones.

Furthermore, we also compare DDRM with other competitive
baselines including model perspective denoising methods and
generative methods:

• AdaGCL [16] is a graph collaborative filtering-based denois-
ing method that incorporates data augmentation through two
adaptive contrastive view generators.

• CDAE [45] introduces random noises to users’ interactions
during training and employs an auto-encoder for denoising.

• MultiVAE [21] utilizes variational auto-encoders with multino-
mial likelihood to model implicit feedback.

• DiffRec [36] is a diffusion-based generative recommender
model that infers users’ preferences by modeling the interaction
probabilities in a denoising manner.

We implement DDRM and the aforementioned model-agnostic
baselines to three representative backend models.
• MFBPR [27] is a collaborative filtering method based on matrix
factorization with BPR ranking loss.

• LightGCN [12] employs a simple yet effective neighborhood
aggregation scheme on graph convolutional networks for repre-
sentation learning.

• SGL [42] is a self-supervised learning method for graph collab-
orative filtering, which conducts graph data augmentation for
robust representation learning.

Evaluation Metrics. We adopt the full-ranking protocol to evalu-
ate the top-K recommendation performance using two widely used
metrics: Recall@K and NDCG@K with 𝐾 = {10, 20}.

4.1.3 Hyper-parameter Settings. We fix the embedding size at
64 to maintain fairness during the evaluation of different methods.
For model-agnostic methods, we initially determine the optimal
hyper-parameters of the three backend models on each dataset
according to their default settings. Subsequently, we maintain the
backend models’ hyper-parameters at their optimal and adjust only
the specific denoising parameters, as per the original papers. For
non-model-agnostic baselines, hyper-parameters are finely tuned
within their default ranges.

Regarding our proposedDDRM,we have seven hyper-parameters
in total: the diffusion steps𝑇 , the inference steps𝑇 ′ = 𝑛𝑇 , the noise
lower bound 𝛼min, the noise upper bound 𝛼max, the noise scale 𝑠 and
loss balance factor 𝜆 and denoising weight factor 𝜎 . In detail,𝑇 and

Plug-In Diffusion Model for Embedding Denoising in Recommendation System Conference’17, July 2017, Washington, DC, USA

𝑇 ′ = 𝑛𝑇 are tuned within 𝑇 = {10, 20, . . . , 60} and 𝑛 = {1, 1.25, 1.5}.
As for the noise-related parameters 𝛼min, 𝛼max and 𝑠 , we explore the
combinations in {1𝑒 − 4, 1𝑒 − 3}, {1𝑒 − 3, 1𝑒 − 2} and {1𝑒 − 4, 1𝑒 − 3},
respectively. For the loss-related parameters, loss balance factor 𝜆
and denoising weight factor 𝛾 are tuned within {0.1, 0.2, . . . , 0.6}
and {0, 0.05, 0.1, 0.2, . . . , 0.9}, respectively.

4.2 Overall Performance (RQ1)
We conduct comprehensive experiments in natural noise setting
to compare DDRM’s performance with other referenced baselines.
The results, illustrated in Table 2, yield several key observations:

• DDRM mostly outperforms backend models and other model-
agnostic denoising methods across all three datasets. This
superior performance can be attributed to DDRM’s denoising
diffusion process, which enhances robust representation learning
through multi-step denoising.

• The performance of DeCA is not consistently better than the
backend model. Two potential reasons emerge: 1) DeCA operates
under the presumption that distinct models yield analogous pre-
dictions on clean data but deviate on noisy data. This assumption
may not consistently hold true across our datasets. 2) DeCA’s
training process involves four models optimized concurrently,
which potentially induces instability.

• DiffRec consistently exhibits commendable performance across
all three datasets, thereby highlighting the adeptness of diffusion
models in denoising. DDRM, more flexible than DiffRec owing to
its model-agnostic identity, can be deployed on any recommender
model with user and item embeddings. What’s more, as for
DiffRec, it requires to perform prediction tasks on all candidate
items for a given user, resulting in high computational costs.
DDRM only necessitates generating one single ideal item at the
embedding level, and calculating the score between generated
item embeddings and candidate item embeddings, which is more
efficient. Furthermore, DDRM bolsters suboptimal models to
perform comparably with, or even surpass, DiffRec, thereby
denoting its tangible enhancements upon the backend model.

4.3 In-depth Analysis
4.3.1 Random Noisy Training (RQ1). We conduct random
noisy training to evaluate the noise resistance capability of DDRM
in comparison to both the backend model and R-CE, which is
the most competitive model-agnostic method. The proportion
of noise in our training settings spanned from 0% to 60%. We
report the results in Figure 3. The results show that: 1) As the
noise ratio increases, the performance of the backend model, R-
CE, and DDRM all tend to deteriorate. This decline is attributed
to the intensifying corruption of data due to the escalating noise
level, making it challenging to discern genuine user preferences.
2) DDRM consistently outperforms both the backend model and
R-CE in different noise ratio settings. This emphasizes DDRM’s
commendable noise resistance, which can be attributed to its
robust representation learned through the diffusion process. Similar
observations are noted on Amazon-book andML-1M but the figures
are omitted for brevity.

Table 3: Performance of different backbone designs in Yelp.
Bold signifies the best performance among the listed models.

Backbone Model R@10 R@20 N@10 N@20
SGL 0.0488 0.0841 0.0290 0.0397

DDRM 0.0517 0.0860 0.0312 0.0415
DDRM (Transformer) 0.0469 0.0786 0.0282 0.0378

DDRM (Noise Inference) 0.0213 0.0364 0.0133 0.0179
DDRM (Dynamic Scale) 0.0508 0.0847 0.0305 0.0407

4.3.2 Ablation Study (RQ2). We execute ablation study to
analyze DDRM from two distinct angles: loss perspective and
module perspective.
• Loss Perspective. We assess the distinct contributions of the
reconstruction loss from the reverse process and the reweighted
loss from the extension, with outcomes depicted in Figure 4 for
Yelp and Amazon-book (omitting ML-1M due to similar trends). We
select the classic model MF and the graph model SGL which has
uniformly commendable performance as our backendmodels. Based
on these results, we can find that: 1) DDRM with reconstruction
loss consistently outperforms the backend model, underscoring the
efficacy of embedding denoising in DDRM. 2) The performance
of DDRM with reweighted loss varies. In certain scenarios, it
underperforms relative to the backend model. Even when it does
show improvements, they are not as pronounced as those from
DDRM with reconstruction loss. This suggests that the underlying
assumptions of data cleaning methods (cf. Sec 1) may not always
hold true. 3) Overall, while reconstruction and reweighted losses
jointly amplify DDRM’s performance, the latter’s contributions are
notably milder than those of the former.
• Module Perspective. To explore the impact of user denois-
ing module and item denoising module, we conduct additional
experiments on the Yelp and Amazon-book dataset using only
the item denoising module of DDRM, with performance shown
in Figure 5. The results indicate a performance decrease compared
to the full DDRM approach, suggesting that noise is present in
user embeddings and necessitates user denoising. However, the
performance with only item denoising still surpasses that of the
backend models alone, which implies that the item denoising
module contributes effectively to noise reduction. Therefore, it can
be inferred that noise exists in both user and item representations,
which prove the effectiveness and necessity of both user denoising
module and item denoising module. It’s important to note that
experiments focusing solely on user denoising were not feasible in
our work since we need to denoise item embeddings to generate
ideal items for users in the inference phase.

4.3.3 Backbone Design (RQ3). We explore various backbone
design methods to validate the performance of our proposed
DDRM. The performance of different backbone designs is shown
in Table 3, noting that the default backend model is SGL since it
has uniformly competitive performance across three datasets. The
detailed analyses of each backbone design are provided below.
• Transformer. In this variation, we substitute the reconstruction
MLP within the denoising module with the standard Transformer
architecture. Our objective was to investigate whether the inclusion
of a more intricate attention mechanism could bolster performance.
Specifically, the collaborative information and step embedding

Conference’17, July 2017, Washington, DC, USA Jujia Zhao, Wenjie Wang, Yiyan Xu, Teng Sun, and Fuli Feng

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0% 20% 40% 60%

Re
ca
ll@

10

Yelp

MFBPR
R-CE
DDRM 0.014

0.016

0.018

0.02

0.022

0.024

0.026

0% 20% 40% 60%

N
DC

G
@
10

Yelp

MFBPR
R-CE
DDRM

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0% 20% 40% 60%

Re
ca
ll@

10

Yelp

SGL
R-CE
DDRM

0.025

0.027

0.029

0.031

0.033

0.035

0.037

0% 20% 40% 60%

N
DC

G
@
10

Yelp

SGL
R-CE
DDRM

Figure 3: Performance comparison of noisy training with random noises on Yelp.

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

MFBPR-based SGL-based

Re
ca
ll@

10

Yelp

Backend model
DDRM (recons)
DDRM (reweighted)
DDRM

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

MFBPR-based SGL-based

Re
ca
ll@

10

Amazon-book

Backend model
DDRM (recons)
DDRM (reweighted)
DDRM

Figure 4: Contributions of reconstruction loss and reweighted
loss to DDRM compared with backend models.

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

MFBPR-based SGL-based

Re
ca
ll@

10

Yelp

Backend model
DDRM (item)
DDRM

0.005

0.015

0.025

0.035

0.045

0.055

MFBPR-based SGL-based

Re
ca
ll@

10

Amazon-book

Backend model
DDRM (item)
DDRM

Figure 5: Contributions of item denoising module to DDRM
compared with backend models.

were designated as the query and key in the Transformer, respec-
tively, while the embedding requiring denoising was assigned as
the value [31]. However, the results revealed the Transformer’s
inferiority to the MLP in this context. A likely rationale for this
outcome lies in the inductive bias introduced by the additional
model structures in the Transformer, which is inappropriate in
the denoising context, thus rendering suboptimal performance in
reconstructing these embeddings. In contrast, the simplicity of the
MLP proves to be highly efficient for the task at hand.
• Noise Inference. As inspired by [20], another approach we
explored is denoising the embedding exclusively from pure noise
instead of noisy average embeddings 𝒆 𝒊𝑻 (cf. Section 3.3) during
the inference phase. This method highly depends on diffusion’s
impressive generation capabilities. Nonetheless, this leads to a
substantial decline in performance. A potential explanation is that
recommendation tasks necessitate the guidance of interaction data
to steer the reverse generation process. Starting with pure noise

seems to make this process unregulated and undermine the ability
to learn effective representations.
• Dynamic Scale.We further implement dynamic noise scales 𝑠
for distinct user and item embeddings during the forward process.
The primary objective behind this maneuver is to evaluate whether
incorporating variable noise scales might enhance the diversity of
the data’s noise profile, thereby facilitating themodel to derivemore
resilient representations in the reverse phase. However, we observe
a performance decline, suggesting that the dynamic scales will
potentially destabilize the model’s learning process. As previously
noted, while the step information 𝑡 signifies the current noise level
of embeddings, the introduction of a dynamic noise scale disrupts
this consistency; thus, it becomes intricate for the denoising module
to utilize the step information effectively in assessing the current
noise level for denoising execution.

4.3.4 Hyper-parameters Analysis (RQ2). For a more nuanced
understanding, we select certain sensitive hyper-parameters, ad-
justing them within the ranges delineated in Section 4.1. The
outcomes of these experiments are visually represented in Figure 6.
From our observations: 1) With an increase in the diffusion step
𝑇 and noise scale 𝑠 , DDRM’s performance initially rises. This is
attributed to an enhanced noise diversity in the data, enabling the
model to foster more robust representations. Nonetheless, overly
extending the diffusion steps and noise scale adversely affects
performance, compromising the model’s personalization capabil-
ities. Hence, it becomes imperative to judiciously determine the
optimal diffusion step and noise scale to harness peak performance.
2) The loss balance factor 𝜆 influences DDRM performance by
mediating the focus between recommendation and reconstruction
tasks. While an increase in 𝜆 initially bolsters performance by
prioritizing embedding denoising, too high a value risks neglecting
the core recommendation task, undermining overall performance.
3) Appropriate selection of 𝛾 is crucial for effective denoising as
higher values may filter out clean samples, while lower values may
not comprehensively filter noisy samples.

5 RELATEDWORK
• Denoising Implicit Feedback. Addressing the noise in implicit
feedback, caused by false-positive interactions, has seen approaches
primarily from data cleaning perspective [9, 35, 38] and model
perspective [16, 45]. Data cleaning methods often rely on specific
assumptions to directly eliminate noisy interactions(e.g.,WBPR [9])
or assign lower weights to such samples(e.g., T-CE [35], R-CE [35],

Plug-In Diffusion Model for Embedding Denoising in Recommendation System Conference’17, July 2017, Washington, DC, USA

0.013

0.015

0.017

0.019

0.021

0.023

0.025

0.03

0.032

0.034

0.036

0.038

0.04

0.042

10 20 30 40 50 60

N
DC

G
@
10

Re
ca
ll@

10

Diffusion step

Recall@10

NDCG@10

𝑻

0.013

0.015

0.017

0.019

0.021

0.023

0.025

0.03

0.032

0.034

0.036

0.038

0.04

0.042

N
DC

G
@
10

Re
ca
ll@

10

Noise scale

Recall@10

NDCG@10

𝒔

𝟏𝒆!𝟓 𝟏𝒆!𝟒 𝟏𝒆!𝟑 𝟏𝒆!𝟐
0.013

0.015

0.017

0.019

0.021

0.023

0.025

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.1 0.2 0.3 0.4 0.5 0.6

N
DC

G
@
10

Re
ca
ll@

10

Loss balance factor

Recall@10

NDCG@10

𝝀

0.013

0.015

0.017

0.019

0.021

0.023

0.025

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.5 0.6 0.7 0.8 0.9 1

N
DC

G
@
10

Re
ca
ll@

10

Reweighted factor

Recall@10

NDCG@10

𝜸

Figure 6: Hyper-parameter analysis of diffusion step 𝑇 , noise scale 𝑠, loss balance factor 𝜆, and reweighted factor 𝛾 in MFBPR-
based DDRM for Yelp dataset.

DeCA [38]), resulting in limited adaptability across different back-
end models and datasets. Model perspective methods, on the other
hand, focus on enhancing the noise resistance of recommender
model. Specifically, some graph-based models (e.g., SGL [42],
AdaGCL [16]) employ data augmentation to enhance data diversity
and then regulate models to learn more robust representation.
Additionally, some auto-encoder based models (e.g., CDAE [45])
intentionally corrupt users’ interactions by introducing different
types of noise during training, and then attempt to reconstruct
the original clean data using simple auto-encoders. However, these
model perspective methods expect models to capture the complex
noise distribution in the real world, whichmight pose a considerable
challenge for the neural networks. Diffusion models have excelled
in various fields, particularly in high-quality generation and multi-
step denoising, revealing substantial robust representation learning
potential. Thus, incorporating diffusion models to denoise implicit
feedback is valuable to further strengthen representation learning
robustness.
• Generative Recommendation. Generative models, notably
Generative Adversarial Networks (GANs) [10, 17, 34] and Varia-
tional Autoencoders (VAEs) [21, 25, 51], are pivotal for personalized
recommendations but face structural limitations [18, 29]. Emergent
diffusion models, providing enhanced stability and representation
compared with GANs and VAEs, have been recently explored
in recommendation contexts [43, 44]. While models like CODI-
GEM [33] and DiffRec [36] utilize diffusionmodels for inferring user
preferences by modeling the distribution of users’ interaction prob-
abilities, other research [7, 20, 23, 37] targets content generation at
the embedding level, akin to our DDRM. For example, DiffuRec [20]
and CDDRec [37] corrupt target item representations into pure
noise in the forward process, subsequently reconstructing them
condition on users’ historical interaction sequences. DiffuASR [23]
uses diffusion models to generate new item sequences, mitigating
data sparsity issues. However, these methods primarily concentrate
on sequential recommendation and tend to overlook the presence of
natural false-positive interactions in implicit feedback. In contrast,
our proposed DDRM employs diffusion models to denoise implicit
feedback, contributing to more robust representation learning.

6 CONCLUSION AND FUTUREWORK
In this work, we proposed the Denoising Diffusion Recommender
Model (DDRM), a plug-in model to bolster robust representation
learning amidst noisy feedback for existing recommendation
models. Given user and item embeddings from any recommender

models, DDRM proactively injects Gaussian noises into the embed-
dings and then iteratively removes noise in the reverse process. To
guide the reverse process in a tractable way, we design a denoising
module to encode collaborative information as guidance. During
the inference phase, we utilize the average embeddings of users’
historically liked items to facilitate ideal item generation. Extensive
experiment results demonstrate the superiority of DDRM compared
with other competitive baselines.

This work offers a novel diffusion-based method to denoise
representations at the embedding level. Future enhancements for
DDRM may involve: 1) enriching the denoising module with more
complex yet well-designed neural networks, 2) incorporating vari-
ous noise types to enhance generative capabilities, and 3) exploring
adaptations of DDRM for the sequential recommendation.

Conference’17, July 2017, Washington, DC, USA Jujia Zhao, Wenjie Wang, Yiyan Xu, Teng Sun, and Fuli Feng

REFERENCES
[1] Huiyuan Chen, Yusan Lin, Menghai Pan, Lan Wang, Chin-Chia Michael Yeh,

Xiaoting Li, Yan Zheng, Fei Wang, and Hao Yang. 2022. Denoising self-attentive
sequential recommendation. In RecSys. ACM, 92–101.

[2] Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli
Lin, and Keping Yang. 2021. AutoDebias: Learning to debias for recommendation.
In SIGIR. ACM, 21–30.

[3] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah.
2022. Diffusion models in vision: A survey. arXiv:2209.04747 (2022).

[4] Jingtao Ding, Fuli Feng, Xiangnan He, Guanghui Yu, Yong Li, and Depeng Jin.
2018. An improved sampler for bayesian personalized ranking by leveraging
view data. In WWW. ACM, 13–14.

[5] Jingtao Ding, Guanghui Yu, Xiangnan He, Fuli Feng, Yong Li, and Depeng Jin.
2019. Sampler design for bayesian personalized ranking by leveraging view data.
TKDE (2019), 667–681.

[6] Yushun Dong, Jundong Li, and Tobias Schnabel. 2023. When Newer is Not Better:
Does Deep Learning Really Benefit Recommendation From Implicit Feedback? ,
942–952 pages.

[7] Hanwen Du, Huanhuan Yuan, Zhen Huang, Pengpeng Zhao, and Xiaofang Zhou.
2023. Sequential Recommendation with Diffusion Models. arXiv:2304.04541.

[8] Ziwei Fan, Ke Xu, Zhang Dong, Hao Peng, Jiawei Zhang, and Philip S Yu. 2023.
Graph Collaborative Signals Denoising and Augmentation for Recommendation.
In SIGIR. ACM, 2037–2041.

[9] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, and Lars Schmidt-
Thieme. 2011. Personalized Ranking for Non-Uniformly Sampled Items. In
KDDCUP. JMLR, 231–247.

[10] Min Gao, Junwei Zhang, Junliang Yu, Jundong Li, Junhao Wen, and Qingyu
Xiong. 2021. Recommender systems based on generative adversarial networks:
A problem-driven perspective. Inf. Sci. (2021), 1166–1185.

[11] Yunjun Gao, Yuntao Du, Yujia Hu, Lu Chen, Xinjun Zhu, Ziquan Fang, and Baihua
Zheng. 2022. Self-guided learning to denoise for robust recommendation. In
SIGIR. ACM, 1412–1422.

[12] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR. 639–648.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. In NeurIPS. Curran Associates, Inc., 6840–6851.

[14] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling.
2021. Argmax flows and multinomial diffusion: Learning categorical distributions.
Curran Associates, Inc., 12454–12465.

[15] Lei Huang, Hengtong Zhang, Tingyang Xu, and Ka-Chun Wong. 2023. Mdm:
Molecular diffusion model for 3d molecule generation. In AAAI. AAAI press,
5105–5112.

[16] Yangqin Jiang, Chao Huang, and Lianghao Huang. 2023. Adaptive Graph
Contrastive Learning for Recommendation. In KDD. ACM, 4252–4261.

[17] Binbin Jin, Defu Lian, Zheng Liu, Qi Liu, Jianhui Ma, Xing Xie, and Enhong Chen.
2020. Sampling-decomposable generative adversarial recommender. In NeurIPS.
Curran Associates, Inc., 22629–22639.

[18] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and
Max Welling. 2016. Improved variational inference with inverse autoregressive
flow. In NeurIPS. Curran Associates, Inc., 4743–4751.

[19] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tat-
sunori B Hashimoto. 2022. Diffusion-lm improves controllable text generation.
arXiv:2205.14217.

[20] Zihao Li, Aixin Sun, and Chenliang Li. 2023. DiffuRec: A Diffusion Model for
Sequential Recommendation. arXiv:2304.00686.

[21] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In WWW. ACM, 689–698.

[22] Weilin Lin, Xiangyu Zhao, Yejing Wang, Yuanshao Zhu, and Wanyu Wang. 2023.
AutoDenoise: Automatic Data Instance Denoising for Recommendations. In
WWW. ACM, 1003–1011.

[23] Qidong Liu, Fan Yan, Xiangyu Zhao, Zhaocheng Du, Huifeng Guo, Ruiming Tang,
and Feng Tian. 2023. Diffusion Augmentation for Sequential Recommendation.
arXiv:2309.12858.

[24] Calvin Luo. 2022. Understanding diffusion models: A unified perspective.
arXiv:2208.11970.

[25] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019.
Learning Disentangled Representations for Recommendation. In NeurIPS. Curran
Associates, Inc., 5712–5723.

[26] Yuhan Quan, Jingtao Ding, Chen Gao, Lingling Yi, Depeng Jin, and Yong Li. 2023.
Robust Preference-Guided Denoising for Graph based Social Recommendation.

In WWW. ACM, 1097–1108.
[27] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. AUAI
Press, 452–461.

[28] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and
Kfir Aberman. 2023. Dreambooth: Fine tuning text-to-image diffusion models
for subject-driven generation. In CVPR. IEEE, 22500–22510.

[29] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
ICML. PMLR, 2256–2265.

[30] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao. 2022.
Learning to denoise unreliable interactions for graph collaborative filtering. In
SIGIR. ACM, 122–132.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[32] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher,
and Pascal Frossard. 2022. Digress: Discrete denoising diffusion for graph
generation. In ICLR.

[33] Joojo Walker, Ting Zhong, Fengli Zhang, Qiang Gao, and Fan Zhou. 2022.
Recommendation via Collaborative Diffusion Generative Model. In KSEM.
Springer, 593–605.

[34] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In SIGIR. ACM, 515–524.

[35] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2021.
Denoising implicit feedback for recommendation. In WSDM. ACM, 373–381.

[36] Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua.
2023. Diffusion Recommender Model. In SIGIR. ACM, 832–841.

[37] Yu Wang, Zhiwei Liu, Liangwei Yang, and Philip S. Yu. 2023. Conditional
Denoising Diffusion for Sequential Recommendation. arXiv:2304.11433.

[38] Yu Wang, Xin Xin, Zaiqiao Meng, Joemon M Jose, Fuli Feng, and Xiangnan He.
2022. Learning Robust Recommenders through Cross-Model Agreement. In
WWW. ACM, 2015–2025.

[39] Zhenlei Wang and Xu Chen. 2023. Robust Recommendation with Adversarial
Gaussian Data Augmentation. In WWW. ACM, 897–905.

[40] Zongwei Wang, Min Gao, Wentao Li, Junliang Yu, Linxin Guo, and Hongzhi
Yin. 2023. Efficient Bi-Level Optimization for Recommendation Denoising. In
SIGKDD. ACM, 2502–2511.

[41] Zitai Wang, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang.
2021. Implicit feedbacks are not always favorable: Iterative relabeled one-class
collaborative filtering against noisy interactions. In MM. ACM, 3070–3078.

[42] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,
and Xing Xie. 2021. Self-Supervised Graph Learning for Recommendation. In
SIGIR. ACM, 726–735.

[43] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang.
2022. DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation. TKDE 34, 10 (2022), 4753–4766.

[44] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.
A neural influence diffusion model for social recommendation. In SIGIR. 235–244.

[45] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-
tive denoising auto-encoders for top-n recommender systems. InWSDM. ACM,
153–162.

[46] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. 2022. Diffusion models: A
comprehensive survey of methods and applications. Comput. Surveys (2022).

[47] Wenhui Yu and Zheng Qin. 2020. Sampler design for implicit feedback data by
noisy-label robust learning. In SIGIR. ACM, 861–870.

[48] Wei Yuan, Chaoqun Yang, Quoc Viet Hung Nguyen, Lizhen Cui, Tieke He,
and Hongzhi Yin. 2023. Interaction-level membership inference attack against
federated recommender systems. (2023), 1053–1062.

[49] Chi Zhang, Rui Chen, Xiangyu Zhao, Qilong Han, and Li Li. 2023. Denoising
and Prompt-Tuning for Multi-Behavior Recommendation. InWWW. ACM, 1355–
1363.

[50] Shengyu Zhang, Tan Jiang, Kun Kuang, Fuli Feng, Jin Yu, Jianxin Ma, Zhou Zhao,
Jianke Zhu, Hongxia Yang, Tat-Seng Chua, et al. 2023. SLED: Structure Learning
based Denoising for Recommendation. TOIS (2023).

[51] Shuai Zhang, Lina Yao, and Xiwei Xu. 2017. Autosvd++ an efficient hybrid
collaborative filtering model via contractive auto-encoders. In SIGIR. ACM, 957–
960.

	Abstract
	1 Introduction
	2 Preliminary
	3 Method
	3.1 DDRM Framework
	3.2 Optimization
	3.3 Inference

	4 Experiments
	4.1 Experimental Settings
	4.2 Overall Performance (RQ1)
	4.3 In-depth Analysis

	5 Related Work
	6 Conclusion and Future Work
	References

